Influence of fibre type on flexural behaviour of self-compacting fibre reinforced cementitious composites
This paper investigates the flexural properties of self-compacting fibre reinforced cementitious composites that contain high fly ash volume. Seven types of fibres were compared at the same volume fraction and in similar matrices containing high-volume fly ash and having a high compressive strength of around 85 MPa at 28 days. Third-point bending test was conducted on beam specimens to obtain their load-deflection curves, and investigate their fracture behaviour, flexural strength, deflection and toughness. The results showed that using straight steel and micro polyvinyl alcohol fibres produced composites demonstrating stable deflection-hardening with multiple-cracking phenomenon. This behaviour resulted in high flexural strength, along with large maximum deflection and toughness values, which are important for applications in cementitious composites. This study indicates that fibres with both sufficiently high aspect ratio and high tensile strength are necessary for achieving deflection-hardening in self-compacting cementitious composites with high-strength matrices containing high-volume fly ash.