Veille Composites Eolien

Rechercher dans ce blog

Translate

9 février 2017

Experimental and Numerical Simulation Analysis of Typical Carbon Woven Fabric/Epoxy Laminates Subjected to Lightning Strike | SpringerLink

Experimental and Numerical Simulation Analysis of Typical Carbon Woven Fabric/Epoxy Laminates Subjected to Lightning Strike | SpringerLink

To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal–electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.