Axial behaviour of jacket piles for offshore wind turbines:
Author(s): Isorna, Rocio; Blanc, Matthieu; Thorel, Luc; et al.
Abstract : To improve our understanding and to quantify the behaviour of a jacket foundation for offshore wind turbines, several tests have been conducted using a geotechnical centrifuge at 100g. The monotonic tension and compression tests carried out on single small-scale model piles (prototype dimensions: 1.8 m in diameter and an embedment depth of 40 m in dense sand) jacked at 1g and 100g show the influence of the set-up method on the axial ultimate capacity and on the tip and shaft resistances. The pile axial capacity in compression is improved, whereas the normalised displacement of the pile is bigger in tension when piles are jacked at 1g. Vertical cyclic loads on single piles jacked at 1g (pure tension tests or two-way tests) and horizontal cyclic loads on a four-pile jacket structure are applied to examine the behaviour under more realistic loading paths. The piles of the jacket structure are considered and studied as singles piles. Finally, the stability diagrams for the single and the jacket piles are discussed to visualise the significant difference in performance of a single pile against the comparable pile in the jacket.
Source: INTERNATIONAL JOURNAL OF PHYSICAL MODELLING IN GEOTECHNICS, 17 (4): 229-245 DEC 2017
Author(s): Isorna, Rocio; Blanc, Matthieu; Thorel, Luc; et al.
Abstract : To improve our understanding and to quantify the behaviour of a jacket foundation for offshore wind turbines, several tests have been conducted using a geotechnical centrifuge at 100g. The monotonic tension and compression tests carried out on single small-scale model piles (prototype dimensions: 1.8 m in diameter and an embedment depth of 40 m in dense sand) jacked at 1g and 100g show the influence of the set-up method on the axial ultimate capacity and on the tip and shaft resistances. The pile axial capacity in compression is improved, whereas the normalised displacement of the pile is bigger in tension when piles are jacked at 1g. Vertical cyclic loads on single piles jacked at 1g (pure tension tests or two-way tests) and horizontal cyclic loads on a four-pile jacket structure are applied to examine the behaviour under more realistic loading paths. The piles of the jacket structure are considered and studied as singles piles. Finally, the stability diagrams for the single and the jacket piles are discussed to visualise the significant difference in performance of a single pile against the comparable pile in the jacket.
Source: INTERNATIONAL JOURNAL OF PHYSICAL MODELLING IN GEOTECHNICS, 17 (4): 229-245 DEC 2017