PHD Characterisation and Exploitation of Ultrasonic Guided Wave Modes for Structural Health Monitoring of Glass-Fibre-Reinforced-Polymer Structures
Recently, great interest has arisen on the application of guided waves on composite materials, owing to the successful results achieved in metallic structures. Due to its more complex nature, guided wave technology for composites is still unmatured, requiring further research to be deployed in commercial structures. The work presented in this thesis focuses on overcoming some of the obstacles for its
deployment, and better understanding uncertainties about its propagation and detection capabilities. Calculation of dispersion curves in composites hinders the use of guided waves, since material properties are not commonly available so existing techniques are unable to calculate them. In this thesis, a new experimental technique is presented for the creation of dispersion curves without requiring any prior knowledge of material properties and being able to be deployed on site.
Recently, great interest has arisen on the application of guided waves on composite materials, owing to the successful results achieved in metallic structures. Due to its more complex nature, guided wave technology for composites is still unmatured, requiring further research to be deployed in commercial structures. The work presented in this thesis focuses on overcoming some of the obstacles for its
deployment, and better understanding uncertainties about its propagation and detection capabilities. Calculation of dispersion curves in composites hinders the use of guided waves, since material properties are not commonly available so existing techniques are unable to calculate them. In this thesis, a new experimental technique is presented for the creation of dispersion curves without requiring any prior knowledge of material properties and being able to be deployed on site.