Developing an advanced monitoring system for strain measurements on structural components represents a significant task, both in relation to testing of in-service parameters and early identification of structural problems. This paper aims to provide a state-of-the-art review on strain detection techniques in composite structures. The review represented a good opportunity for direct comparison of different novel strain measurement techniques. Fibers Bragg grating (FBG) was discussed as well as non-contact techniques together with semiconductor strain gauges (SGs), specifically infrared (IR) thermography and the digital image correlation (DIC) applied in order to detect strain and failure growth during the tests. The challenges of the research community are finally discussed by opening the current scenario to new objectives and industrial applications. View Full-Text
Matériaux composites et éolien - Blog de la Cellule Veille du Département Cosys de l'Université Gustave Eiffel - Patrick Lacour , Françoise Ambiaux
Rechercher dans ce blog
Translate
1 juin 2020
J. Compos. Sci. | Free Full-Text | Strain State Detection in Composite Structures: Review and New Challenges
J. Compos. Sci. | Free Full-Text | Strain State Detection in Composite Structures: Review and New Challenges
Developing an advanced monitoring system for strain measurements on structural components represents a significant task, both in relation to testing of in-service parameters and early identification of structural problems. This paper aims to provide a state-of-the-art review on strain detection techniques in composite structures. The review represented a good opportunity for direct comparison of different novel strain measurement techniques. Fibers Bragg grating (FBG) was discussed as well as non-contact techniques together with semiconductor strain gauges (SGs), specifically infrared (IR) thermography and the digital image correlation (DIC) applied in order to detect strain and failure growth during the tests. The challenges of the research community are finally discussed by opening the current scenario to new objectives and industrial applications. View Full-Text
Developing an advanced monitoring system for strain measurements on structural components represents a significant task, both in relation to testing of in-service parameters and early identification of structural problems. This paper aims to provide a state-of-the-art review on strain detection techniques in composite structures. The review represented a good opportunity for direct comparison of different novel strain measurement techniques. Fibers Bragg grating (FBG) was discussed as well as non-contact techniques together with semiconductor strain gauges (SGs), specifically infrared (IR) thermography and the digital image correlation (DIC) applied in order to detect strain and failure growth during the tests. The challenges of the research community are finally discussed by opening the current scenario to new objectives and industrial applications. View Full-Text