Veille Composites Eolien

Rechercher dans ce blog

Translate

12 août 2020

Joining Behavior of Jute/Sisal Fibers Based Epoxy Laminates Using Different Joint Configurations: Journal of Natural Fibers: Vol 0, No 0

Joining Behavior of Jute/Sisal Fibers Based Epoxy Laminates Using Different Joint Configurations: Journal of Natural Fibers: Vol 0, No 0

The natural fiber-based polymeric composites are being used extensively in various engineering applications, especially in the non-structural parts and components. Although, a large number of primary processing techniques, such as hand-layup and compression molding are available for fabrication of parts, still the secondary processing in terms of joining and machining is inevitable. The joining of composite parts becomes necessary in case of complicated and intricate product designs. Adhesive joining is one of the most commonly used processes for polymer-based composite materials. It is a cheap, easy, and smooth bonding process and does not necessitate the drilling of holes for the purpose of mechanical fastening. In the present experimental investigation, the joint strength of woven fiber mat (sisal, jute, and hybrid) reinforced epoxy composites has been investigated using different joint configurations, namely, single lap, double-strap butt, and scarf joint. The effect of adhesives has also been explored by joining composites with two types of epoxy resins and corresponding hardener. It was observed that the hybrid composites recorded better joining performance for both types of adhesives. Moreover, the Field Emission Scanning Electron Microscopy (FE-SEM) has been used to understand the failure mechanisms during tensile testing of adhesively bonded natural fiber-reinforced composite laminates. The three-dimensional assembly models of adherend specimens were created using the SOLIDWORK V.16 modeling software. ANSYS-V.18.2 WORKBENCH was employed for the analysis of the joint performance. The maximum shear stress and the total deformation results were determined. The finite element analysis (FEA) results were compared with experimental findings and were found to be in good agreement.